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Vesicle adsorption on a plane: Scaling regimes and crossover phenomena
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Lattice self-avoiding surfaces with spherical topology, rooted on a plane, are studied with Monte Car-
lo and scaling methods. As the adsorption energy increases, two transitions occur. The first is in the
universality class of the special adsorption point for branched polymers. The adsorbed vesicle’s interior
changes from branched polymer to two-dimensional compact at a second multicritical point, beyond
which the perimeter on the plane keeps a self-avoiding ring dimension. This point, in a class recently
discovered for interacting ring polymers, does not exist for strictly two-dimensional vesicles.
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The stochastic geometry of random surfaces, conceived
for example as topologically two-dimensional objects em-
bedded in three-dimensional Euclidean space, is an issue
of considerable current interest for both condensed-
matter physics and field theory. Random surfaces model
various physical objects, ranging from biological mem-
branes to interfaces separating different phases [1]. The
statistics of surfaces is also closely related to topics like
string [2] and lattice gauge theories [3].

Among the various existing types of random surfaces,
those constructed with elementary plaquettes of a regular
lattice have played an important role since the very be-
ginning of activity on the subject, especially through their
close relation to lattice gauge theories [3]. These models
are extensively studied also in connection with the phys-
ics of vesicles, i.e., closed membranes like those constitut-
ing red blood cells [1,4,5].

A vesicle can be described by a closed self-avoiding
surface (SAS) built up with lattice plaquettes in such a
way that neither overlaps nor intersections occur [6]. A
closed SAS with spherical topology behaves as a
branched polymer (BP) in the scaling limit, due to the
dominance of thin ramified configurations [7,8]. Here we
study adsorption on a plane of such a SAS.

Polymer adsorption is a subject of much interest from
both fundamental and applied points of view [9,10]. In
the determination of vesicles’ shapes, the importance of
adhesion has already been stressed [11]. In this Rapid
Communication we provide the first systematic study of
adsorption critical phenomena in d =3 for a model of a
fluid, or hexatic vesicle. Besides identifying novel scaling
regimes and multicritical phenomena peculiar to SAS,
due to their three-dimensional (3D) nature even in the
strongly adsorbed regime, we also establish interesting
connections of some features of SAS adsorption with re-
cently discussed polymer collapse phenomena [12] and
vesicle models [5] in d =2.

Our model has a generating function
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where the sum is over the SAS, S, with |S| plaquettes all
belonging to the z = 0 half-space of a cubic lattice. N,(S)
is the number of plaquettes of S belonging to the z =0
plane. K is a plaquette fugacity, while ¢ has the meaning
of a Boltzmann factor associated with the contact of a
plaquette with the plane. (z>1 implies attraction.) In
Eq. (1) all S have a fixed plaquette on the plane, and Cn,n,

is the number of distinct S with |S|=n and N,(S)=n,.
The integer x is chosen big enough (x =2,3) to ensure
that Z and grand-canonical averages of interest diverge at
criticality [7].

Our Monte Carlo strategy is described in Ref. [7]. The
main innovation is an oct-tree data structure that allows
satisfactory control of the statistics, even when the model
is very close to criticality (|S|~10°).

We estimate critical behaviors such as
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where R, (t) is the canonical rms radius of gyration, with
respect to the center of mass, of surfaces with |S|=n and
arbitrary N,(S). Equation (3) is also equivalent to
R, (t)~n", as n— . The different regimes of the ad-
sorption process can be detected from the scaling
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In the case of polymers one can distinguish three criti-
cal regimes [10]. By analogy we expect an ordinary re-
gime in which ¢ is not big enough to produce adsorption.
Then, in Eq. (4), $=0 applies; because the surface grows
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as an essentially bulk object, K, should have its bulk
value, independent of z. In the adsorbed regime, by con-
trast, a finite fraction of plaquettes is adsorbed, and ¢=1.
The adsorbed regime occurs for ¢ above some threshold
t,; in this case, K. becomes ¢ dependent. In passing from
ordinary to adsorbed regimes, exponents like v and 6
should also change. Indeed, t =¢, marks a special mul-
ticritical point, at which v still has its bulk value,
but ¢=¢(¢,), the surface crossover exponent, with
0<o(t;)<1.

We verified that all this occurs in SAS adsorption.
However, for SAS the adsorbed regime has a richer struc-
ture distinct from the polymer case.

The qualitative phase diagram in Fig. 1(a) summarizes
our results for £ >¢, (see also Fig. 2). An extra fugacity
W controls the SAS volume in the same way as K con-
trols the area. We normally operate at W;=1, so W5 is
not included explicitly in the formulas. A critical surface
sheet exists in the W; =1 half-space and intersects the
line K=K_.(t) on the W;=1 plane. The region
K <K.(t); W3=1 is a locus of first-order transitions.
Two-dimensional BP critical behavior holds on the criti-
cal surface for W3 <1 and for W;=1 with ¢, <t <¢,.
For W;=1, at t=t, a multicritical point separates the
BP regime from a line of criticality characterizing a vesi-
cle with 2D compact interior for ¢ > ¢,.

We determined K, as a function of ¢ on the basis of
both maximum likelihood methods for the behavior (2),
and of fits of

(n )=2cnn1+’°K"/ZK ~ —(1+x—6,)/(K,—K) ,

c

using runs at different K’s [7]. Sampling frequency and
statistical errors were determined with the criteria illus-
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FIG. 1. Sketch of SAS phase diagram in the adsorbed region.
(a) For t <t,, K. keeps the constant bulk value. (b) Phase dia-
gram of 2D vesicle.

trated in Ref. [7]. For ¢ > 1 it is easy to prove the follow-
ing inequalities:

K ()t 122K (1)<t 12 (5)

where K.(1) was already estimated [7]. For t>6 the
upper bound in Eq. (5) almost matches the curve

FIG. 2. Picture of a typical vesicle configuration in the adsorbed regime. Colors have no special meaning.
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K. =K _(t) as discussed below. Such a bound is obtained
by considering that, for our vesicles, n, <n /2. Thus,
asymptotically, disk-like configurations, in which the sur-
face “spreads” compactly on the plane, should dominate.
In such configurations n, ~n /2 for n — .

K. is nearly constant and roughly equal to the bulk
value, K (1), for t <t,=1.43%0.03, whereas a rather no-
ticeable decrease sets in for # >¢,. An alternative way of
locating the transition exploits the fact that the behavior
of R, should cross over from a v value appropriate to
bulk criticality to one appropriate to the adsorbed re-
gime. So, the variation in estimated v exponents signals
the transition. This is better located by studying the
trend of effective canonical v determinations, v,, based
on successively more asymptotic samplings, i.e., sam-
plings cut at increasing maximum » =k. The v, varia-
tions as a function of ¢ should become more and more
sharp for k — o, because finite-size round-off effects be-
come progressively less pronounced. At the multicritical
point marking the transition, the direction of approach of
the v, ’s to the asymptotic values typically inverts itself,
and the curves tend to intersect at v values which approx-
imate v, the exponent of the multicritical point. Accu-
rate determinations of v, can be obtained by extrapolat-
ing, for increasing k, the intersections of v, (¢) and v,(?),
with, e.g., [ > k. Extrapolations of the v, values for ¢ <t,
and t>t; lead, respectively, to v=0.506+£0.008 and
0.64+0.01, fully consistent with what is expected for
branched polymers in d=3 (v=4 [13]) and d=2
(v=0.64081+0.0003 [14]). The v values obtained from
the intersections of the various curves are very close to
0.5 and extrapolation leads to v(¢;)=0.51%0.02. This is
consistent with a special adsorption point, for which the
v exponent is still the bulk one, as in the ordinary regime.

With the same procedure used to estimate K., we
determined also the entropic exponent 6, as a function of
t, although with larger uncertainties than for v and ¢.
We obtained, respectively, 859=0,(¢t <t,)=1.410.1 and
6P=0,(t,)=0.3+0.2. That 69" should equal the bulk
value 6=2 is expected for BP [15]. The crossover ex-
ponent ¢(t,) at the special point was determined by
linear fitting of the behavior (4) on a log-log plot. This
yielded ¢(¢,)=0.70£0.06, quite consistent with the esti-
mate ¢=0.68 for branched polymers in Ref. [16]. Most
recently [17] both 6 and ¢ were conjectured for BP by
attempting an extension to semi-infinite geometry of field
theory results of Ref. [13]. However, our ¢, like that of
Ref. [16], seems hardly compatible with the value ¢=1
produced there. For t; <t <t,, with ¢,=6.0+0.3, the
adsorbed SAS behaves as a branched polymer in d =2.
Equation (2) holds there with 8;=0.0+0.2, which is con-
sistent with the d =2 bulk exponent [13], taking into ac-
count the shift by unity due to rooting with a d =2 bulk.

Most interesting here is the clear indication from the v
analysis that for ¢ =¢, a new multicritical phenomenon
occurs, which shows a crossover of v from d =2 BP, to
d =2 compact value v=1. This further transition is the
mechanism through which the system adapts itself to the
expected asymptotic dominance of compact, disk-like
configurations. For a strongly adsorbed vesicle the most
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important configurations involve no plaquette reaching
higher than the z =1 plane. Thus, the SAS projection on
the plane could behave like a 2D vesicle without holes,
controlled by effective fugacities W, =Kt and K for en-
closed plaquettes and perimeter steps, respectively. For
2D vesicles the phase diagram is reported in Fig. 1(b).
The critical behavior is known to be BP as long as W, <1
[5]. At W,=1 the vesicle is critical with compact
area and self-avoiding ring (SAR) perimeter for
K=K_gsg=0.3790. .., while it has first-order droplet
singularities for K <K,sr [5]. We find K2X(,)t,
=0.9410.06 and an effective W, extremely close to, but
never exceeding, unity for ¢ > t,, consistent with Eq. (5).
In spite of these coincidences, however, the line
K=K.(t), t>t, is not a first-order line. Indeed, we
verified that the volume and projected area of our SAS
keep becoming critical with v~1 as K—K (¢)— from ¢,
up to t~9.0, at least. A second-order transition is also
indicated by an analysis of fluctuations of the above
quantities.

For 2D vesicles the compact area critical behavior is
realized only at one point, W, =1, K =K _gug, of the crit-
ical line, and crossover to BP is not controlled by an ad-
ditional multicritical point. For adsorbed SAS, on the
contrary, the effective v;’s for both volume and projected
area extrapolate to a multicritical v(¢,)=0.54+0.03. A
full elucidation of the nature of the point at ¢, is a chal-
lenging issue, bearing also on polymer statistics problems.
For sure this point has features expected for a BP ©
point. However, v(t,), even if barely compatible with a
recent numerical estimate at the BP © point in d =2
(v=0.509£0.003 [18]), could be inconsistent with the
latest conjectured exact value v=1 [19]. Thus, the mul-
ticritical point displayed by SAS in the adsorbed regime
could well belong to a new universality class, different
from that of the d =2 BP O point studied in Refs. [18]
and [19]. This is also suggested by the circumstance that
in Ref. [19] such a © point has been mapped into the
point W, =1, K=K _gar of 2D vesicles.

A further indication of the richness of SAS and of the
intriguing nature of the multicritical point at ¢, is given
by the behavior of the vesicle’s perimeter on the adsorb-
ing plane. As perimeter we consider the subset of surface
plaquettes perpendicular to such a plane. Clearly such
perimeters can in principle have self-intersections and
disconnections, but we expect them to be irrelevant in the
strongly adsorbed regime. Indeed, the average canonical

radius, R pony for perimeters with n, plaquettes, behaves

as R ~ n,?. The

value is
p’nl’np—Mw P

extrapolated

v, =0.6410.02 in a wide portion of the (#,7,) interval,
fully consistent with the adsorbed SAS behaving as a 2D
BP. For t>t, the v,; exponents extrapolate to
v, =0.74+ —0.02 in a wide range up to r~9.0. This v,
is consistent with the perimeter having SAR critical
behavior along the line ¢t >t,, K=K_(z). Indeed, we
know that the 2D SAR'’s are dense objects [20]; so, the re-
sults for the perimeter are compatible with the behaviors
of volume and area discussed above.

Intersections of v, curves are consistent with the
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above location of ?,, and their extrapolation gives
vp(t2)=0.66i0.03 as the multicritical exponent, a fur-
ther indication that the present crossover from the BP to
SAR perimeter is not the one of 2D vesicles. In the con-
text of d =2 polymer statistics, a similar SAR-BP cross-
over has been discussed most recently for ringlike struc-
tures [12]. In that case the transition is driven by suitable
attractive interactions which lead the ring to stick onto
itself to form a sort of highly ramified double structure.
Although with a different physical mechanism, due to ad-
sorption, the same transition takes place here for the
vesicle’s perimeter. Our estimate of v,(¢,) supports the
possibility that the multicritical point found for the SAS
profile belongs to the universality class of the SAR-BP
collapse discussed in Ref. [12] (v=0.6610.03).

Adsorbed SAS’s thus give rise to a much richer
scenario than 2D vesicles [Figs. 1(a) and 1(b)]. This in-
cludes a new multicritical point connected to both BP ©
collapse and to the SAR-BP transition for the perimeter.
Our analysis suggests that the study of properly defined
external perimeters for standard models of BP © collapse
could be quite interesting.

The multicritical point at ¢, and the second-order line
for t > t, can be understood by considering the difference

ORLANDINI, STELLA, TESI, AND SULLIVAN 48

between the strongly adsorbed SAS, which is still a 3D
object, and a strictly 2D vesicle living on the plane. For
SAS a volume fugacity W; can be switched on, together
with the effective area fugacity. W; is expected to act as a
W, fugacity in Fig. 1(b), as far as the adsorbed SAS pro-
jected area is concerned. Monte Carlo tests confirm that
as soon as W3 <1 ramification is favored and 2D BP
behavior is established. At the same time, it is easy to
conclude that W;=1 and K <K (?) is a first-order sur-
face, since the SAS increases suddenly to infinity as soon
as W;>1 [5]. Thus, intersecting the phase diagram in
Fig. 1(a) with a generic plane t =const >¢, we obtain a
realization of the phase diagram of 2D vesicles [Fig. 1(b)].
This does not depend on the particular plane considered,
consistently with the above conclusions concerning the
nature of the critical line for ¢ >¢,.
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FIG. 2. Picture of a typical vesicle configuration in the adsorbed regime. Colors have no special meaning.



